◆◎(泉光 第11卷 第9期

连续波 HF 化学激光器 计算浓度场的简化模型

周学华 陈海韬

(中国科学院力学研究所)

提要:介绍一个计算连续波 HF 化学激光器浓度场的简化模型。假设速度场与 普通平板边界层速度场相似。温度场与浓度场是用联立能量与组份守恒方程以及相 似的速度场求解得到的。求得了混合、化学反应区的界面曲线,并研究了气流速度、 温度以及化学反应等对激发态 HF 浓度的影响。

Simplified model for calculating concentration field of diffusion-type CW HF chemical lasers

Zhou Xuehua, Chen Haitao (Institute of Mechanics, Academia Sinica)

Abstract: A simplified model for calculating concentration field of diffusion-type CW HF chemical lasers is presented. The velocity field is assumed to be analogical to one of the ordinary flat-plate laminar boundarys. The temperature field and concentration field are solved by coupling the energy and species conservation equations as well as the velocity similar solution. A contour of the mixing boundary is obtained. In addition, the effects of velocity, temperature of the gas flow and chemical reactions on HF concentration of the excited states are studied.

一、引言

在化学激光器中喷管出口直到光学谐振 腔出口之间是激活区,在其中发生混合、化学 反应、激发与碰撞消激发、受激发射以及光学 谐振等化学、物理过程。 混合是比较慢的过 程,直接影响化学激光器的工作。

为了研究化学激光器激活区中的化学、物理过程,目前文献已发表过三类计算方法。

第一种是 Mirele^[11] 等提出的"层流火焰片" 法。这个方法需要预先给定火焰片的形状, 然后按照一维的方法计算出各流线中各种粒 子的浓度分布,再综合成二维图案;第二种是 King^[21]等采用的"层流边界层"法,即利用差 分方程直接求解一组有化学反应的等压层流 边界层的偏微分方程。第三种是 Anderson^[31] 等采用的直接求解 Navier-Stokes 方程组的

收稿日期: 1982 年 12 月 24 日; 修改稿收到期: 1983 年 10 月 31 日。

方法。这个方法虽然非常烦琐,但计算结果 可以作为各种计算方法的参考标准。

本文的方法属于层流边界层法,但利用 了速度场的相似解,因此方程得以简化,计算 比较简单,并且能够得到和 Anderson 相近 的结果。

二、流动模型

田F 化学激光器由燃烧室、喷管、光腔及 其真空系统等组成。燃烧室 供给 含 有 F 原 子的 He 气流,它在喷管出口处与另 一股 含 有 H₂ 的 He 气流混合,化学反应生成振动激 发态的 HF(v)分子,部分 HF(v)分子也消激 发为 HF(v-1)分子。当HF(v)分子数 目 大于 HF(v-1)分子时,即造成粒子数反 转。

为了避免两股超音速气流交叉时发生的 激波损失,虽然已经研究出各种形式的喷管, 但是两股气流的混合,总可以被认为是互相 平行的。因此,在计算上可以单独研究相邻 两个喷孔间的问题,尽管一个喷管包含着很 多个小喷孔。

图1 平行流混合、反应区示意图

现在考虑一股 F+He 气流 与另一股 H₂+He 气流平行流动时在交界面上发生的 分子扩散及化学反应(见图 1)。为了研究计 算方法是否适用,本文仅考虑主要的激发反 应与消激发反应,共14个,如下:

$$\begin{split} & \text{H}_{2} + \text{F} \stackrel{k_{1}}{\longrightarrow} \text{HF}(1) + \text{H}, \\ & k_{1} = 2.72 \times 10^{13} e^{-805} / T; \\ & \text{H}_{2} + \text{F} \stackrel{k_{2}}{\longrightarrow} \text{HF}(2) + \text{H}, \\ & k_{2} = 8.80 \times 10^{13} e^{-805} / T; \\ & \text{H}_{2} + \text{F} \stackrel{k_{3}}{\longrightarrow} \text{HF}(3) + \text{H}, \\ & k_{3} = 4.48 \times 10^{13} e^{-805} / T; \end{split}$$

 $\operatorname{HF}(1) + \operatorname{HF} \xrightarrow{k_4} \operatorname{HF}(0) + \operatorname{HF}.$ $k_4 = 3 \times 10^{14} / T + 3.5 \times 10^4 \times T^{2.26}$ $\operatorname{HF}(2) + \operatorname{HF} \xrightarrow{k_5} \operatorname{HF}(1) + \operatorname{HF}.$ $k_5 = 6 \times 10^{14} / T + 7 \times 10^4 \times T^{2.26}$ $\operatorname{HF}(3) + \operatorname{HF} \xrightarrow{k_6} \operatorname{HF}(2) + \operatorname{HF}.$ $k_6 = 9 \times 10^{14}/T + 10.5 \times 10^4 \times T^{2.26}$ $2\mathrm{HF}(2) \xrightarrow{k_7} \mathrm{HF}(3) + \mathrm{HF}(1),$ $k_7 = 6 \times 10^8 \times T^{1.5}$ $2\mathrm{HF}(1) \xrightarrow{k_8} \mathrm{HF}(2) + \mathrm{HF}(0).$ $k_8 = 2 \times 10^8 \times T^{1.5}$; $\mathrm{HF}(1) + \mathrm{H}_2 \xrightarrow{k_9} \mathrm{HF}(0) + \mathrm{H}_2.$ $k_9 = 10^5 \times T^2$: $\mathrm{HF}(2) + \mathrm{H}_2 \xrightarrow{k_{13}} \mathrm{HF}(1) + \mathrm{H}_2,$ $k_{13} = 2 \times 10^5 \times T^2$; $\mathrm{HF}(3) + \mathrm{H}_2 \xrightarrow{k_{14}} \mathrm{HF}(2) + \mathrm{H}_2,$ $k_{14} = 3 \times 10^5 \times T^2$; $\operatorname{HF}(1) + \operatorname{F} \xrightarrow{k_{10}} \operatorname{HF}(0) + \operatorname{F},$ $k_{10} = 1.5 \times 10^{(10-1.1/\theta)} \times T;$ $\operatorname{HF}(2) + \operatorname{F} \xrightarrow{k_{11}} \operatorname{HF}(1) + \operatorname{F}$. $k_{11} = T \times 1.5 \times 10^{(10-0.5/\theta)};$ $\operatorname{HF}(3) + \operatorname{F} \xrightarrow{k_{12}} \operatorname{HF}(2) + \operatorname{F},$

 $k_{12} = T \times 1.5 \times 10^{10};$

式中括号内的数字表示振动能级。HF(0) 为基态,HF(1)、(2)、(3) 依次表示较高的能态,k为反应速率常数^[4,7,8], θ =4.575×10⁻³ ×T。反应1-3为泵浦反应,反应7-8为 V-V反应,其他为V-T反应。粒子的反应 速率 ω 以其中一个为例说明如下:

. 528 .

 $\omega_{\rm HF(0)} = \rho^2 k_4 Y_{\rm HF(1)} Y_{\rm HF} / 400$ $+ \rho^2 k_8 Y_{\rm HF(1)}^2 / 400$ $+ \rho^2 k_9 Y_{\rm HF(1)} Y_{\rm H_2} / 40$ $+ \rho^2 k_{10} Y_{\rm HF(1)} Y_{\rm F} / 380$

其中 ρ 为混合气体密度, T 为温度, Y_i 为粒 子 i的质量分数, Y_{HF}= $\sum Y_{HF(v)}$, $v=1, 2, 3_o$

三、计算方法

取直角坐标轴 $x, y_o \Leftrightarrow y > 0$ 的半平面 为 F+He的流动区域, y < 0的半平面为 H₂+He的流动区域。两股流在原点处开始 混合,同时发生化学反应。在 Ox轴上产生 混合和反应,垂直于 xy平面方向上的各参数 认为是没有变化的。因而,问题是二维的(见 图 1)

考虑到在我们的问题中,在 *x* 方向上的 气体流速大于 *y* 方向上的流速,在 *x* 方向上 各参数的变化远小于 *y* 方向上的变化。因 此,上述粘性流动守恒方程组可以写成和 Prandtl 层流边界层方程相同的形式,即

连续方程

$$\partial(\rho u)/\partial x + \partial(\rho v)/\partial y = 0$$
 (1)

动量方程

$$\rho u \frac{\partial u}{\partial x} + \rho v \frac{\partial u}{\partial y} - \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y} \right) = 0 \quad (2)$$

组份方程

$$\rho u \frac{\partial Y_i}{\partial x} + \rho v \frac{\partial Y_i}{\partial y} - \frac{\partial}{\partial y} \left(\rho D \frac{\partial Y_i}{\partial y} \right) = \omega_i$$
(3)

能量方程

$$\rho u \frac{\partial H_0}{\partial x} + \rho v \frac{\partial H_0}{\partial y} - \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right)$$
$$= -\sum_{i=1}^{n} H_i \omega_i \tag{4}$$

式中 μ 为粘性系数, D为扩散系数, λ 为热 传导系数, H_0 为气流的总焓即 $H_0 = C_p T + u^2/2$, H_i 为组份 i的生成热。动量方程(2) 中已忽略了dp/dx。dp/dx = 0的假设在绕 平板流动中是许可的^[5,9,2]。

边界条件为: 在 x≤0, y>0 和 x>0,

 $y = +\infty$ 处有 $u = u_1$, $T = T_1$, $Y_i = Y_{i1}$; 在 $x \le 0, y < 0$ 和 $x > 0, y = -\infty$ 处有 $u = u_2$, $T = T_2, Y_i = Y_{i20}$

考察方程(1)和(2),并假定气流的乘积 ρ、μ是常数,可以得到相似解^[5]:

$$u = u_1 f'(\eta) \tag{5}$$

式中的 $f(\eta)$ 必须满足 Blasius 方程:

$$''(\eta) + f(\eta)f'(\eta) = 0$$
 (6)

上式已进行了变数变换,即

$$\eta = z \sqrt{u_1/2\xi}$$
$$z = \int_0^y \rho \, dy$$
$$\xi = \int_0^x \rho \mu \, dx$$

其边界条件为: 在 $\eta = \infty$ 处, 有 $f'(\eta) = 1$; 在 $\eta = -\infty$ 处, 有 $f'(\eta) = \frac{u_2}{u_1}$ 。文献[5, 6]已描 述了这个方程的数值解及近似分析解。

可以确信,如果流场中没有发生化学反应,由(2)、(3)、(4)式的相似性可知,浓度分布和温度分布也应有与速度相似的解。但由于存在化学反应,(3)、(4)两式右边不等于零,这种相似性就被破坏了。下面应用隐式有限差分法求解温度场与浓度场的非相似解。同样应用上述的坐标变换,组分方程和能量方程可以转换为^[5]

$$\frac{\partial^{2}Y_{i}}{\partial\eta^{2}} + f(\eta)\frac{\partial Y_{i}}{\partial\eta} - \partial f'(\eta)\xi\frac{\partial Y_{i}}{\partial\xi} \\
= -\frac{\partial\xi\omega_{i}M_{i}}{U_{1}\rho^{2}\mu}$$
(7)
$$\frac{\partial^{2}H_{0}}{\partial\eta^{2}} + f(\eta)\frac{\partial H_{0}}{\partial\eta} - \partial f'(\eta)\zeta\frac{\partial H_{0}}{\partial\xi} \\$$

$$=\frac{\partial\xi}{U_{1}\rho^{2}\mu}\sum^{n}H_{i}\omega_{i}M_{i}$$
(8)

推导中已经使用了 Pr=1, So=1 的关系式。

把方程(7)、(8)变换成差分方程时所使 用的差分格式如图2所示。沿ξ方向取三点 一侧差分,沿η方向取三点中心差分。各阶 差商关系式为

$$\frac{\partial Y_{(m,n)}}{\partial \eta} = \frac{1}{2\Delta \eta} \left(Y_{(m,n+1)} - Y_{(m,n-1)} \right)$$

. 529 .

图 2 三点一侧隐式差分格式

$$\frac{\frac{\partial^2 Y_{(m,n)}}{\partial \eta} = \frac{1}{(\Delta \eta)^2}}{\times (Y_{(m,n+1)} - 2Y_{(m,n)} + Y_{(m,n-1)})}$$
$$\frac{\frac{\partial Y_{(m,n)}}{\partial \xi} = \frac{1}{2\Delta \xi}$$

×($3Y_{(m,n)}-4Y_{(m-1,n)}+Y_{(m-2,n)}$, 对 T 也有同样的关系式。将这些式子代入 方程(7)、(8)便可得到一系列代数方程。在 (m, n)上的 Y_i 和 T,可以由相邻各点的 Y_i 和 T 值以及该点的 u 及 $f(\eta)$ 值求出。我们 采用叠代法来求。第一次叠代所用的初值可 取 $\xi=m-1$ 上各点的值。叠代到最后二次 结果的差少于 0.00001 为止。

对于ξ=0处的值,可以直接求解

$$\frac{\partial^2 Y_i}{\partial \eta^2} + f(\eta) \frac{\partial Y_i}{\partial \eta} = 0, \qquad (9)$$

$$C_{p} \frac{\partial^{2} T'}{\partial \eta^{2}} + f(\eta) \frac{\partial H_{0}}{\partial \eta} = 0, \qquad (10)$$

两方程得出。对于*ξ*=1处的值, 在*ξ*方向只能采用二点一侧差分公式了。

最后将由 ξ 、 η 坐标求出的结果变换到 物理坐标x、y上,便得到整个激活区的浓度 与温度分布。求出了粒子数反转分布就可以 求出各点上的小信号增益系数,它可以由公 式 $g_{JV} = A(C_{V+1} - \lambda C_V)$ 计算得到^{CLI}。式中 g_{VJ} 称为小信号增益系数,A、 λ 、O为各参 数,其表示式见文献[1]。

三、计 算 结 果

本文计算在 Flex-150 电子数字计算机 上进行。 ξ 轴上取点 40 个, 4ξ =0.1×10⁻¹⁰。 η 轴上取点 180 个, 4η =0.1。这样可以得到 稳定的解。一次计算时间少于15分钟。采 用的五种束流物理参数如表1 所示。

表1 束流的初始条件

参数	A	B	C	D	E
U1(米/秒)	3000	1500	1500	1500	1500
$T_1(\mathbf{K})$	150	150	150	300	150
P1(托)	2.4	2.4	2.4	2.4	2.4
Y F ,1	0.249	0.249	0.249	0.249	0.249
Y _{He} ,1	0.751	0.751	0.751	0.751	0.751
U2(米/秒)	3000	1500	1500	1500	750
$T_2(\mathbf{K})$	150	150	150	300	150
.P ₂ (托)	2.4	2.4	2.4	2.4	2.4
Y H2,2	0.251	0.251	1.000	0.251	0.251
Y _{He} ,2	0.749	0.749	0.0	0.749	0.749

下面以参数 B 计算结果为例加以分析。 图 3 为在 $\xi=2\times10^{-10}$ 处气流温度及各 种浓 度在不同高度 η 处的分布曲线。由于混合和 反应发生在两股流的自由交界面附近,因此 浓度与温度曲线的最大值出现在 $\eta=0$ 附近。

. 530 .

又由于化学反应速率常数 k_2 值较高,因此 田F(2)有较高的浓度,有可能造成粒子数反 转。图中实线是考虑了14个化学反应计算 得到的田F(v)的浓度和温度曲线,虚线是在 同样条件下仅考虑头6个化学反应计算得到 的。由图可见,两种情况差别不大,但虚线的 粒子数反转数和温度均比实线高些。例如在 $\eta=0$ 的直线与曲线的交点上,虚线上的粒子 数反转数 $Y_{\rm HF(2)}-Y_{\rm HF(1)}=0.0115$,而实线上 的为0.0113。另外图上的曲线与文献[5,2] 的结果是相似的。

应用状态方程把结果转换到 *x、y* 坐标 之后 HF(2)浓度分布如图 4 所示。曲线 1、 2、3、4 分别表示 *x*=1、2、3、4 厘 米处的 HF(2)浓度曲线,短横线表示浓度值。这些 曲线都具有中间浓度高,两端浓度低的特点, 随着 *x* 的增大,曲线向上下两方延伸,可以明 显地看到反应区与非反应区两部分。如果令 当地浓度最大值的 *e*⁻¹ 处各点的连结线为反 应区与非反应区的分界线,便可得到如图 4 上所示的界面曲线。

根据上述的浓度差可以求出 x、y 面上 各点的小信号增益系数。图5是由 HF(v= 2, J=3, 4, 5)跃迁到 HF(v=1, J=4, 5, 6) 三条谱线的小信号增益分布曲线。

用这个计算方法,也很容易计算出不同 束流参数对浓度分布的影响。图6是根据表 1所给出的五种束流参数在ξ=1.0×10⁻¹⁰ 处 HF(2)的浓度分布曲线,A 线是将气流速 度提高到 3000 米/秒之后计算得到的。由于 速度增加,气流温度上升较小,激发反应较

慢,因而 HF(2)生成量减少。相反,D 线是 提高束流温度到 300 K 时计算得到的,由于 温度升高,HF(2)浓度显著增加。C 线是将 H₂-He 气流改为纯 H₂ 时的计算结果。H₂浓 度的增加起着二个作用,第一是增加激发反 应速率(见化学反应1、2、3),第二是增加消 激发速率(见反应8、9、10),但消激发速率最 快的是反应10 即 HF(3)→HF(2)较快,所 以实际效果是HF(3)浓度降低一些,HF(2) 的浓度反而增加一些。图 3 中实线 HF(3)浓 度小于虚线的 HF(3)的浓度,而实线 HF(2) 的浓度却大于虚线浓度,就说明了 这一点。 所以 H₂浓度的适当增加可以提高激发速率, 因此 HF(2)浓度也显著增加。从本文计算 (下转第526页) 由(33)、(40)消去 Bo、 B1,得:

$$\mu = \nu_i (1 + \mathbf{X}^2) \frac{(\eta + \delta_i)^2}{\delta_i} \qquad (41)$$

注意到(26)及(32)

$$\eta \! > \! 0, \; \delta_i \! = \! rac{\gamma_a \! + \! \gamma_b}{2} \! = \! rac{1}{T_2} \! > \! 0$$

故(41)式也可写为

$$\mu \geqslant \nu_i \frac{(\eta + \delta_i)^2}{\delta_i} \geqslant \nu_i \delta_i = \frac{\nu_i}{T_2} \quad (42)$$

本文导出 $R(\infty) < \infty$ 及(42)式作为孤立波 存在的必要条件,前者是关于光强的;后者是 关于粒子数浓度的。当然它们不是充分条件, 但与引言中提到的面积定理结合在一起,有 可能就是孤立波存在的充要条件,但有待于 进一步证明。当这些条件得到满足后,电振动 振幅将以孤立(34)式的形式在介质内传输。 (34)式是一个孤立波的解析解,对于n(>1)个孤立波情形讨论是类似的,只需将(18)、 (20)、(22)式推广为:

$$F(x) = \sum_{j=1}^{n} d_{j}(t) e^{-i\xi_{j}x}, \quad \overline{F}(x) = \sum_{j=1}^{n} \overline{d}_{j}(t) e^{i\xi_{j}x}$$

$$(43)$$

$$g_{2}(x, y) = \sum_{j=1}^{n} \overline{h}_{j} e^{i\xi_{j}y}, \quad \overline{g}_{2}(x, y) = \sum_{j=1}^{n} \overline{h}_{j} e^{-i\xi_{j}y}$$

$$g_{1}(x, y) = \sum_{j=1}^{n} \overline{k}_{j} e^{i\xi_{j}y}, \quad \overline{g}_{1}(x, y) = \sum_{j=1}^{n} \overline{k}_{j} e^{-i\xi_{j}y}$$

$$(44)$$

其他均可类似地进行。

附 录

i. 由(9)式

(上接第531页)

结果可见:适当提高气流温度,适当增加 日。 的含量和适当减少束流速度,对提高激光功 率有利。但这些仅是从极有限的计算数据中 得到的,实际结论尚需系统计算(系统变化各 种初始条件例如温度、压力、浓度、流速等)。

参考文献

[1] H. Mirele et al.; AIAA Paper, 1972, No. 72~145.
[2] W. S. King et al.; AIAA J., 1972, 10, No. 12,

$$\begin{split} \Psi e^{i\delta x} &= \int_{-\infty}^{x} q e^{i2\delta(x-y)} \varphi e^{i\delta y} \, dy \\ &= \int_{-\infty}^{x} q e^{i2\delta(x-y)} \left[1 + \int_{-\infty}^{y} r \psi e^{i\delta y'} \, dy' \right] dy \\ &= \frac{1}{2i\delta} q + O\left(\frac{1}{\delta^2}\right) \end{split}$$
(A1)

由(13)式

$$\psi = \frac{1}{i\delta} g_2(x, x) e^{-i\delta x} + O\left(\frac{1}{\delta^2}\right)$$
(A2)

比较(A1)、(A2)得:

ii. 由(10)式

$$q = 2g_2(x, x) \tag{A3}$$

$$\begin{split} \overline{\varphi}e^{-i\delta x} &= \int_{-\infty}^{x} r e^{-i\delta(x-y)} \overline{\psi}e^{-i\delta y} \, dy \\ &= \int_{-\infty}^{x} r e^{-i2\delta(x+y)} \\ &\times \left[-1 + \int_{-\infty}^{y} q \overline{\psi}e^{-i\delta y'} \, dy' \right] dy \\ &= \frac{-1}{2i\delta} r + O\left(\frac{1}{\delta^2}\right) \end{split}$$
(A4)

由(14)式

$$\overline{\varphi} = \frac{1}{i\delta} \overline{g}_1(x, x) e^{i\delta x} + O\left(\frac{1}{\delta^2}\right)$$
(A5)

比较(A4)、(A5)得:

$$r = -2\bar{g}_1(x, x) \tag{A6}$$

iii. 将 $g \to -L$, $\tilde{g} \to -\overline{L}$, $F \to G$, $\overline{F} \to -\overline{G}$, (13)~(16)式便过渡到文献[4]中的(4.36)、(4.37)、 (4.39a)、(4.39b)诸式。

参考文献

- [1] G. L. Lamb; Rev. Mod. Phys., 1971, 43, 99.
- [2] H. A. Haus; Rev. Mod. Phys., 1979, 51, 331.
- [3] 《固体激光导论》,上海人民出版社, 1974年.
- [4] M. J. Ablowitz et al.; Studies in Appl. Math., 1974, 53, 249.
- [5] D. J. Kaup; Studies in Appl. Math., 1976, 55, 9.
- [6] A. C. Scott et al.; Proc. IEEE, 1973, 61, 1443.

1647.

- [3] A. P. Kothari et al.; AIAA Paper, 1979, No. 79~0009.
- [4] H. Mirels; AIAA J., 1976, 14, No. 7, 930.
- [5] F. A. Williams; «燃烧理论», 第十二章, p. 291~ 331, 科学出版社, 1976.
- [6] R. C. Lock; Quart. J. Mech. and Appl. Math., 1951, 4, 42.
- [7] S. N. Suchard et al.; J. Chem. Phys., 1972, 57, No. 12, 5065.
- [8] 陈锡荣等; 《中国激光》, 1983, 10, No. 3, 129.
- [9] S. I. Pai; Fluid Dynamics of Jets, p. 212 and p.
 79, D. Van Nostrand Co., Princeton (1954).

. 526 .